

School of Engineering and Technology Department of Computer Science and Engineering Curriculum Feedback Analysis 2023-24

The Department of Computer Science and Engineering revises its curriculum for the programs offered every year based on the relevant trends in industry and emerging technologies by considering the feedback provided by all its stakeholders on the curriculum. This report is an analysis of the feedback collected from the various stakeholders like students, alumni, faculty members, parents and industry experts. This report shall be forwarded to the Department Curriculum Design and Development Cell (CDC) for consideration while revising the curriculum.

This academic year feedback was collected from a total of 672 students, 58 faculty members, 42 alumni, 12 employers and 14 parents. This feedback was analyzed and this report contains the analysis and recommendations to CDC based on the analysis carried out.

Student Feedback on Curriculum

A total of 672 students took the curriculum feedback survey. The questionnaire and the number of responses for each year of study was as follows

All Years of Study (UG & PG) Total Number of Students Participated in the Survey : 672 students					
Questions	Excellent	Very Good	Good	Average	Needs Improvement
Does the content of the curriculum satisfy the stated objectives and learning outcomes?	134	344	132	45	17
Does the curriculum cover advanced topics?	126	356	122	46	22
Is the curriculum effective in developing critical/analytical thinking?	122	344	143	54	9
Whether the curriculum enhances your knowledge and skills in the relevant domain?	121	412	95	33	11
Are the textbooks and reference materials relevant to the content of the curriculum?	134	388	114	27	9
Does the curriculum orient towards higher education?	124	402	115	24	7
Does the curriculum enable the students to apply their knowledge in real-life situations?	136	387	117	21	11
Is employability given weightage in the design and development of curriculum?	137	386	114	25	10
Does the curriculum promote self-study and attitude of research?	145	389	92	28	18
Does the curriculum meet your overall expectations?	121	388	124	30	9

The above table is a representation of the feedback responses given by the students as per thequestionnaire.

The graph given below depicts the overall expectation meeting of the students from all years asfar as syllabus is concerned. From the feedback it can be seen, where 90% of the students are satisfied with the curriculum being offered. However, when the General comments and suggestions were analyzed, the following were the main points given by the students

- In the curriculum of B.Tech in Computer Science and Engineering and M.Tech in Computer Science and Engineering, no major concerns were present based on the feedback.
- The students under specialization program such as CSE(AIML), CSE(DS), CSE(IOT) & M.Tech(DS) has given concerns on the specialization core course and relevant credits.

Faculty Feedback on Curriculum

Faculty members are the backbone of any higher education institution and their feedback is very important to analyse the curriculum and to update it as per the necessity. As a practice, the department takes feedback from every course handling faculty member and the below section isan analysis of the same.

The questionnaire floated with 60 faculty members concentrated on the below questions and also on suggestions/ recommendations for the courses handled by them in the odd/even semester of 2022-23. The synopsis of the same is given below

Based on the feedback of the faculty members, there was a need for restructuring the course structure for B.Tech in UG programs and M.Tech DS. This was due tocourses having certain pre-requisites falling in the same semester of study. This was deliberated by the members of CDC and the course structure was recommended to be changed for M.Tech in DS.

Since the UG program undergoes NEP 2020 policy and structure level implementation, the UG program structure have undergone increase in credits, curriculum structure change and NEP policy inclusion.

However, the UG (CSE / CSE specialization and IT) & PG (CSE) structure for the existing batch of students remain the same, still, the course level syllabus content updation stands application of them. Change in the syllabus has been recommended by CDC and submitted in annexure for the BOS 2023 approval.

Feedback from Alumni.

The feedback was also collected from Alumni, who are one of our stakeholders and also BOS Members. A few majorly observed suggestions are

1. To improve Programming and Logical Thinking among the students

2. To make use of Kaggle and Coder's earth websites to improve the design pattern and learn realtime problem-solving.

3. Certifications and project works are equally important to showcase their technical and soft skills during the placements.

Total Number of Alumni Participated in the Survey : 42 (2016 to 2023)					
Questions	Excellent	Very Good	Satisfactory	Average	Needs to Improve
Is the syllabus updated on a regular basis depending on the current trends and advanced topics?	8	19	12	0	3
Does the syllabus orient towards higher education?	7	17	12	2	4
Does the syllabus provide employability weightage?	8	21	7	2	4
Does the syllabus meet the expectations of the industry?	9	14	11	6	2
Does the syllabus enable the students to connect the knowledge to real life application?	6	17	11	7	1
Does the syllabus encourage entrepreneurship?	6	15	9	8	4
Do you think that the syllabus motivates the students for research and development?	5	18	12	4	3

Feedback from Industry Expert and Academic Expert

In addition to the above feedback collected from faculty members, feedbacks were also collected from alumni, employers and parents. The major suggestions as given by these stakeholders areas follows

- 1. Inclusion of more hands on training in the trending areas like artificial intelligence and machine learning.
- 2. To increase credits for Project work. Project work to concentrate on the specialization
- 3. Certifications and real time projects could improve the skillset and placement opportunity
- 4. Constant programming practices throughout the course of study.
- 5. Observed the eligibility criteria for MTech in DS is allowed from other stream of study, in such case the Level of core course deliberations should begin from beginner level and end in expert level. In most cases prerequisite courses may not fit. Alternate solution to be looked for compensation.

Feedback from Parents

Total Number of parents participated survey : 14				
Questions	Excellent	Very Good	Satisfactory	
Does the syllabus orient the students toward higher education?	7	4	4	
Is employability given weightage in the design and development of the syllabus?	11	4	-	
Is the syllabus have component on value based education?	9	3	3	
Does the syllabus have components to serve the needs of the society?	10	4	1	
Does the syllabus promote self-study and attitude of research?	12	3	-	
Does the syllabus help the students to enhance their personality?	13	1	1	

This analysis report on all the feedback collected from the students, faculty members, alumni and verticals shall be presented to the Department CDC for discussion and deliberation to be recommended to the Department Board of Studies for the academic year 2023-24 to be held in the month of February/ March 2023.

duit

HEAD of the Department of Computer Science and Engineering Bangalore Kengeri Campus CHRIST (Deemed to be University) Bengaluru - 560 074, INDIA

CDC Coordinator

School of Engineering and Technology

Department of Computer Science and Engineering Action Taken Report on Curriculum Feedback Analysis 2022-23

The Department of Computer Science and Engineering collects analyses and takes action based on the teedback received from all the stakeholders as far as curriculum is concerned. The stakeholders from whom the feedback is collected are

- 1. Students
- 2. Teachers
- 3. Alumni
- 4. Parents
- 5. Industry Experts / Academic Experts

The Curriculum Design and Development Cell (CDC) of the Department initiates this feedback collection, also analyses the same, and prepares a feedback analysis report on the curriculum every academic year. These are then proposed to the Department Board of Studies (BoS) for their approval to be included in the curriculum for the subsequent academic year.

This report highlights the action taken in the below mentioned courses which have been revised as per the feedbacks received from the stakeholders.

Semester: I Course: Computer Programming Course Code: CS134P/CS234P

Unit	Existing Syllabus	Proposed Syllabus	Reasons for Change	Remarks
Unit-1	Unit-1 Algorithms and Flowcharts,	Unit 1: Algorithms and Flowcharts,	Based on stakeholders	Applicable
	Constants, Variables and Datatypes,	Constants, Variables and Data	feedback	for Batch
	Operators Algorithms and flowcharts:	types, Operators		2023
	Algorithms, Flowcharts, Examples on	Algorithms and flowcharts:		
	algorithms and flowcharts. Basic structure	Algorithms, Flowcharts, Examples		
	of a C program, C Tokens, Data types.	on algorithms and flowcharts. Basic		
	Declaration of variables. Operators:	structure of a C program, C Tokens,		
	Arithmetic operators, Relational operators,	Data types. Declaration of variables.		
	Logical operators, Assignment operators,	Operators: Arithmetic operators,		
	Increment and Decrement operators,	Relational operators, Logical		
	Conditional operator, Bitwise operators,	operators, Assignment operators,		
	Special operators, Arithmetic expressions,	Increment and Decrement		
	Evaluation of expressions, Precedence of	operators, Conditional operator,		
	Arithmetic operators, Type conversions in	Bitwise operators, Special operators,		
	expressions, Operator precedence and	Arithmetic expressions, Evaluation		
Unit-3	associatively	of expressions, Precedence of		
		Arithmetic operators, Type		
	Unit-3 Arrays, User Defined Functions	conversions in expressions,		
	Arrays: One-dimensional Arrays,	Operator precedence and		
	Declaration of one-dimensional Arrays,	associativity, Coding Ethics and		
	Initialization of one-dimensional Arrays,	Coding Standards.		
	Two-dimensional Arrays, Initializing two			
	dimensional Arrays. User-defined	Unit 3: Arrays, User Defined		
	functions: Need for User-defined Functions,	Functions		
	A multi-function Program, Elements of user	Arrays: One-dimensional Arrays,		
	- defined Functions, Definition of	Declaration of one-dimensional		
	Functions, Return Values and their types,	Arrays, Initialization of one-		
	Function Calls, Function Declaration,	dimensional Arrays, Two-		
	Category of Functions, No Arguments and	dimensional Arrays, Initializing two		
	no Keturn Values, Arguments but no	dimensional Arrays. User-defined		
	Return 9 CU_Curriculum_Syllabus_BT-	tunctions: Need for User-defined		
	CSE(DS)_2022_26 B.Tech – CSE-(Data	Functions, A multifunction		

	Science)-2022-26 Values, Arguments with	Program, Elements of user - defined	
	Return Values, No Argument but Returns a	Functions, Definition of Functions,	
	Value, Functions that Return Multiple	Return Values and their types,	
Unit-4	Value, recursion -recursive functions,	Function Calls, Function	
	Limitations of recursion. Storage Class	Declaration, Category of Functions,	
	Specifiers	No Arguments and no Return	
	1	Values, Arguments but no Return	
		Values, Arguments with Return	
	Unit-4 Pointers String concepts: declaration	Values, No Argument but Returns a	
	and initialization, String I/O functions,	Value, Functions that Return	
	Array of strings, String manipulation	Multiple Value, recursion -	
	function. Understanding the pointers,	recursive functions, Limitations of	
	Accessing the Address of a Variable,	recursion.	
	Declaring Pointer Variables, Initialization		
	of Pointer Variables, Accessing a Variable	Unit 4: Strings, Pointers	
	through its Pointer, Pointer Expressions,	String concepts: declaration and	
Unit-5	Pointer Increments and Scale Factor,	initialization, String I/O functions,	
	Pointers and Arrays, Pointers and	Array of strings, String	
	Character Strings, Pointers as Function	manipulation function.	
	Arguments. Dynamic Memory Allocation;	Understanding the pointers,	
		Accessing the Address of a Variable,	
	Unit-5 Strings, Derived Types, Files Basic of	Declaring Pointer Variables,	
	structures, structures and Functions, Arrays	Initialization of Pointer Variables,	
	of structures, structure Data types, type	Accessing a Variable through its	
	definition.Unioins Files: Defining,	Pointer, Pointer Expressions,	
	openingand closing of files, Input and	Pointer Increments and Scale Factor,	
	output operations, Standard Library	Pointers and Arrays, Pointers and	
	Functions for Files	Character Strings, Pointers as	
		Function Arguments	
		Unit 5. Structures Unions and	
		Files	
		Basic of structures, structures and	
		Functions, Arrays of structures,	
		structure Data types, type	
		definition, Unions, Overview of	

	UI/UX design, Demonstration of gcc compiler for compiling C codes.	

Semester: IV Course: Operating System Course Code: CS432P/CSE432P

Unit	Existing Syllabus	Proposed Syllabus	Reasons for Change	Remarks
	Process	Process	Based on stakeholders	Applicable for Batch
UNIT-3	Synchronization:	Synchronization:	feedback and subject	2022
	Background, The	Background, The	experts suggestions.	
	Critical Section	Critical Section		
	Problem, Peterson's	Problem, Peterson's		
	Solution,	Solution,		
	Synchronization	Synchronization		
	Hardware, Semaphores,	Hardware, Semaphores,		
	Classical Problems of	Classical Problems of		
	Synchronization,	Synchronization,		
	Monitors,	Monitors,		
	Synchronization	Synchronization		
	Examples	Examples, Deadlocks.		

Semester: V Course: Computer Graphics with OpenGL Course Code: CS541E01

Unit	Existing Syllabus	Proposed Syllabus	Reasons for Change	Remarks
	Unit-4 3D viewing &	Unit-4 3D Projections	To accommodate recent	Applicable for 2021
UNIT-4	Projections Geometry,	,Light & Material with	industry based concepts	and 2022 Batch
	Vectors, Matrices and	Open GL		
	Homogeneous			
	Coordinates, Primitives,	Viewing and		
	Polygonal Meshes,	Projections, Perspective		
	Drawing Primitives,	Projection,		
	Viewing and	Orthographic		
	Projections, Perspective	Projection,		
	Projection,			
	Orthographic	Light and Material,		
	Projection, The Viewing	Vision and Color,		
	Transform, A Simple	OpenGL Materials,		
	Avatar, Viewer Nodes	OpenGL Lighting,		
	in Scene Graphics	Lights and Materials in		
		Scenes, Textures,		
UNIT-5	Light, Material &	Texture targets,		
	Textures with Open GL	Mipmaps and Filtering,		
	Light and Material,	Texture		
	Vision and Color,	Transformations,		
	OpenGL Materials,	Creating Texture with		
	OpenGL Lighting,	OpenGL, Loading Data		
	Lights and Materials in	into Texture, Texture		
	Scenes, Case Study:	Coordinate Generation,		
	Textures, Texture			
	targets, Mipmaps and	Unit-5 Introduction to		
	Filtering, Texture	Unreal Engine		
	Transformations,			
	Creating Texture with	Getting Started with		
	OpenGL, Loading Data	UE4, Hardware &		
	into Texture, Texture	software Specifications,		
	Coordinate Generation,	Installing & epic games		

 Texture Objects.	Launcher, Starter	
	Content, Learn Tab,	
	Marketplace Tab,	
	Library Tab, Vault	
	Cache, Actors and	
	geometry.	
	Components, Tools and	
	editors, Unreal editor	
	Interface, Assets and	
	packages, Coordinate	
	Space Terminology,	
	Directory Structure.	
	5	

Semester: III Course: Computer Networks Course Code: CS531P/CSE435P

Unit	Existing Syllabus	Proposed Syllabus	Reasons for Change	Remarks
	Unit-1 DATA	Unit-1 DATA	To accommodate recent	Applicable for 2022,2021
UNIT-1	COMMUNICATIONS	COMMUNICATIONS -	industry-based concepts	Batch
	Components - Direction of	Proposed		
	Data flow – networks –			
	Components and	Introduction- Data		
	Categories – types of	communications:		
	Connections – Topologies –	Components - Data		
	Protocols and Standards – ISO	Flow - Networks -		
	/ OSI model – Transmission	Physical Structures –		
	Media – Coaxial Cable – Fiber	Network Types –		
	Optics – Line	Protocol Layering –		
	Coding – Modems – RS232	TCP/IP Protocol Suite -		
	Interfacing sequences.	OSI Model		
	Unit-2 DATA LINK LAYER	Data and Signals -		
	Error – detection and	Digital Signals- Data		
	correction – Parity – LRC –	Rate Limits-		
UNIT-2	CRC – Hamming code – low	Performance- Digital		
	Control and Error control -	Transmission – Digital		
	stop and wait - go back-N	to Digital Conversion-		
	ARQ – selective repeat	Line coding -Line coding		
	ARQ- sliding window –	Schemes – Transmission		
	HDLC LAN - Ethernet IEEE	Media		
	802.3 - IEEE 802.4 - IEEE			
	802.5 - IEEE 802.11 - FDDI -	UNIT -2 Data-Link		
	SONET – Bridges.	Layer-Proposed		
		Introduction - Link		
		Laver Addressing –		
	Unit-4 TRANSPORT LAYER	Error Detection and		
	Duties of transport layer -	Correction-Cyclic		
UNIT-4	Multiplexing –			

	Demultiplexing - Sockets -	Codes- Check sum-	
	User	Forward Error	
	Datagram Protocol (UDP) -	correction -Data Link	
	Transmission Control	Layer Protocols-	
	Protocol (TCP) - Congestion	Automatic Repeat	
	Control – Quality of services	(ARQ) protocols -Stop	
	(QOS) – Integrated Services.	and Wait, Go-back-N,	
		Selective Repeat, HDLC,	
	Unit-5 APPLICATION	PPP	
	LAYER		
	Domain Name Space (DNS) -	Medium Access Control	
UNIT-5	SMTP – FTP – HTTP - WWW	- Random Access	
	– Security –	Protocols -CSMA/CD,	
	Cryptography-Case study.	CSMA/CA,	
		Channelization -FDMA-	
		TDMA-CDMA, Wired	
		LANs: IEEE Project	
		802.3, IEEE 802.4 - IEEE	
		802.5, Wireless LAN-	
		IEEE Project 802.11,	
		WiMAX -IEEE Project	
		802.16	
		Introduction – Network-	
		Layer Services- Packet	
		Javar Parformance	
		IBw4 Addresses	
		Internet Protocol (IP)	
		$\frac{1110110001}{100001}$	
		IPv6 Subpetting	
		Routing	
		Introduction - Routing	

	Algorithms-Distance	
	Vector Routing Link	
	State Routing Path	
	Voctor Routing, Lunicost	
	Parting Proto colo DID	
	Routing Protocols- KIP,	
	OSPF, BGP -NAT	
	Unit-4 Transport Layer -	
	Proposed	
	Transport Layer	
	Protocols- UDP	
	Introduction - Services.	
	Port Numbers, User	
	Datagram Protocol-User	
	Datagram UDP	
	Sometical LIDP	
	A maliantiana	
	Applications	
	T (I	
	Transport Layer	
	Protocols TCP, SCTP	
	Transmission Control	
	Protocol- TCP Services,	
	TCP features- TCP	
	Connection- TCP	
	Congestion control -	
	SCTP - SCTP Services,	
	SCTP Features , Packet	
	Format, Flow Control To	
	Improve Oos	
	r - ~ ~ ~	
	Unit-5 APPLICATION	
	LAYER -Proposed	
	LITTER - Hoposed	

	Application Layer	
	Introduction – DNS- SMTP- DHCP- FTP- HTTP-Telnet	
	Cryptography and Network Security-	
	Security Goals- Attacks-	
	Confidentiality -	
	Concepts of symmetric	
	and asymmetric key	
	cryptography-RSA,	
	Sharing of symmetric	
	keys - Diffie Hellman -	
	Firewalls.	
	Foundations of Modern	
	Networking-	
	Introduction: Software	
	Defined Networking -	
	SDN Architecture,	
	Virtualization, The	
	Internet of Things-	
	Components.	

Semester: VI Course: Compiler Design Course Code: CS632P/CSE532

Unit	Existing Syllabus	Proposed Syllabus	Reasons for Change	Remarks
UNIT-1	Unit-1 INTRODUCTION TO	Unit-1	Based on stakeholders	Applicable for Batch
	COMPILERS	INTRODUCTION TO	feedback and	2023,2022 and 2021
	Translators-Compilation and	COMPILERS	Suggestion given by	
	Interpretation-Language		Program and Course	

processors -The Phases of	Introduction-Structure	Coordinator	
Compiler-Errors encountered	of a compiler – Lexical		
in Different Phases-The	Analysis – Role of		
Grouping of PhasesCompiler	Lexical Analyzer – The		
Construction Tools -	Phases of Compiler-		
Programming Language	Grouping of the phases		
basics.	- Errors in different		
	phases - Input		
Unit-2 LEXICAL ANALYSIS	Buffering –		
Need and Role of Lexical	Specification of Tokens		
Analyzer-Lexical Errors-	– Recognition of		
Expressing Tokens by Regular	Tokens – Lex – Finite		
Expressions- Converting	Automata — Regular		
Regular Expression to DFA-	Expressions to		
Minimization of DFA-	Automata –		
Language for Specifying	Minimizing DFA.		
LexicalAnalyzers-LEX-Design			
of Lexical Analyzer for a	Unit-2 SYNTAX		
sample Language.	ANALYSIS		
	Role of Parser –		
Unit-3 SYNTAX ANALYSIS	Grammars – Error		
Need and Role of the Parser-	Handling – Context-		
Context Free Grammars -Top	free grammars –		
Down Parsing -General	Writing a grammar –		
Strategies- Recursive Descent	Top Down Parsing –		
Parser Predictive Parser-LL(1)	Recursive Descent		
ParserShift Reduce Parser-LR	Parser - Predictive		
Parser-LR (0)Item-	Parser – Bottom Up		
Construction of SLR Parsing	Parser – SR Parser , LR		
Table -Introduction to LALR	Parser - SLR - CLR -		
Parser - Error Handling and	LALR – Error Handling		
Recovery inSyntaxAnalyzer-	and Recovery in Syntax		
YACC-Design of a syntax	Analyzer- Case study :		
Analyzer for a Sample	YACC		
Language			

	Unit 3 INTERMEDIATE	
	CODE CENERATION	
LIGH A CONTANDIDECTED	CODE GENERATION	
TRANCLATION & DUN TIME	Company Diversity d	
TRANSLATION & KUN TIME	Syntax Directed	
ENVIRONMENT	Definitions, Evaluation	
Syntax directed Definitions-	Orders for Syntax	
Construction of Syntax Tree-	Directed Definitions,	
Bottom-up Evaluation of S-	Intermediate	
Attribute Definitions- Design	Languages: Syntax Tree,	
of predictive translator - Type	Three Address Code,	
SystemsSpecification of a	Types and Declarations,	
simple type checker-	Translation of	
Equivalence of Type	Expressions, Type	
Expressions-Type	Checking.	
Conversions.	-	
RUN-TIME ENVIRONMENT:	Unit 4 RUN-TIME	
Source Language Issues-	ENVIRONMENT AND	
Storage OrganizationStorage	CODE GENERATION	
Allocation- Parameter Passing-		
Symbol Tables-Dynamic	Storage Organization,	
Storage Allocation-Storage	Stack Allocation Space,	
Allocation in FORTAN.	Access to Non-local	
	Data on the Stack, Heap	
Unit-5 CODE OPTIMIZATION	Management – Issues	
AND CODE GENERATION	in Code Generation –	
Principal Sources of	Design of a simple	
Optimization-DAG-	Code Generator -	
Optimization of Basic Blocks-	Incremental Design: A	
Global Data Flow Analysis-	Case Study of a	
Efficient Data Flow	compiler	
Algorithms-Issues in Design of	I	
a Code Generator - A Simple	Unit-5 CODE	
Code Generator Algorithm	OPTIMIZATION	
	Principal Sources of	
	Optimization – Peep-	
	Optimization – Peep-	

	hole optimization –	
	DAG-Optimization of	
	Basic Blocks-Global	
	Data Flow Analysis –	
	Efficient Data Flow	
	Algorithm.	
	0	

Semester: VI Course: Internet of Things Course Code: CS631P

Unit	Existing Syllabus	Proposed Syllabus	Reasons for Change	Remarks
3	IoT Architecture	Title 3: IoT Architecture		
	Web of Things versus Internet	Web of Things versus		
	of Things - Two Pillars of the	Internet of Things - Two		
	Web - Unified Multitier WoT	Pillars of the Web -		
	Architecture, Cloud Providers	Unified Multitier WoT		
	and Systems, The Cloud of	Architecture, Cloud		
	Things Architecture. IoT	Providers and Systems,		
	Protocols: Application	The Cloud of Things		
	Protocols, Service Discovery	Architecture. IoT		
	Protocols, Infrastructure	Protocols: Application		
	Protocols,	Protocols, Service		
		Discovery Protocols,		
		Infrastructure Protocols,		
		IoT Data Link Protocols,		
		Network Layer Routing		
		Protocols, Network		
		Layer Encapsulation		
		Protocols, Session Layer		
		Protocols.		

Course Code: CS744E02

Unit	Existing Syllabus	Proposed Syllabus	Reasons for Change	Remarks
	Overview of extraction	Data Loading, Backup &	To accommodate recent	Applicable for
UNIT-5	loading and	Recovery & Database	industry based	2022,2021,2020
	Transformation,	Performance Tuning	concepts	
	Loading Data: Using	Overview of extraction	_	
	the SQL Loader Utility,	loading and		
	Using External Tables	Transformation,		
	to Load Data. Overview	Loading Data: Using the		
	of Common Techniques	SQL Loader Utility,		
	used for Transforming	Using External Tables to		
	Data,Introduction to	Load Data.		
	Data Pump Technology	Overview of Common		
	- Benefits, Uses and	Techniques used for		
	Components	Transforming Data,		
	of Data Pump. Access	Introduction to Data		
	method, Data Pump	Pump Technology -		
	Files, Privileges,	Benefits, Uses and		
	Mechanics of Data	Components of Data		
	Pump Job.	Pump. Access method,		
	Backing Up Oracle	Data Pump Files,		
	Databases: Backup	Privileges, Mechanics of		
	Terms, Guidelines,	Data Pump Job.		
	Strategies, Examining	Backing Up Oracle		
	Flash Recovery Area -	Databases: Backup		
	benefits of Flash	Terms, Guidelines,		
	recovery Area, Looking	Strategies, Examining		
	into Flash Recovery	Flash Recovery Area -		
	Area, Setting size of	benefits of Flash		
	Flash Recovery Area	recovery Area, Looking		
	Creating	into Flash Recovery		
	Flash Recovery Area,	Area, Setting size of		
	Backing up Flash	Flash Recovery Area		
	Recovery Area, RMAN	Creating Flash Recovery		
	- Benefits, Architecture,	Area, Backing up Flash		
	Connecting to RMAN.	Recovery Area, RMAN		

SQL Query	- Benefits, Architecture,	
Optimization:	Connecting to RMAN.	
Approach to	SQL Query	
Performance Tuning,	Optimization:	
Optimizing Oracle	Approach to	
Query Processing, Cost-	Performance Tuning,	
based Optimizer,	Optimizing Oracle	
Drawbacks of CBO.	Query Processing, Cost-	
SQL Performance	based Optimizer,	
Tuning Tools -	Drawbacks of CBO. SQL	
EXPLĂIN PLAN,	Performance Tuning	
Autotrace, SQL Trace	Tools – EXPLAIN	
and	PLAN, Autotrace, SQL	
TKPROF.Tuning the	Trace and TKPROF.	
instance: Introduction,	Tuning the instance:	
Automatic Tuning vs.	Introduction, Automatic	
Dynamic Views.	Tuning vs. Dynamic	
Tuning Oracle Memory:	Views.	
Tuning Shared Pool –		
Library Cache,	Introduction to	
Dictionary	iSQL*Plus: Installation,	
Cache, Hard vs. Soft	configuration, Starting	
Parsing, Sizing Shared	and Stopping	
Pool, Tuning Buffer	iSQL*Plus, Logging into	
Cache –	and disconnecting from	
Sizing buffer Cache,	iSQL*Plus. Case study.	
Multiple pools for		
Buffer Cache, Tuning		
Large,		
Streams and Java Pools.		
Introduction to		
iSQL*Plus: Installation,		
configuration, Starting		
and Stopping		
iSQL*Plus, Logging into		
and		

disc	connecting from		
iSQ	L*Plus. Case study.		

Semester: VII

Course: Research Methodology Course Code: CS744E05

Unit	Existing Syllabus	Proposed Syllabus	Reasons for Change	Remarks
Unit-5	Unit-5	Unit-5	Suggestion given by	Applicable for
	INTERPRETATION	INTERPRETATION	Program and Course	2022,2021,2020
	AND REPORT	AND REPORT	Coordinator	
	WRITING Meaning Of	WRITING		
	Interpretation,	Meaning Of		
	Technique of	Interpretation,		
	Interpretation:	Technique of		
	Precaution in	Interpretation:		
	Interpretation,	Precaution in		
	Significance of Report	Interpretation,		
	Writing, Different Steps	Significance of Report		
	in Writing Report,	Writing, Different Steps		
	Layout of the Research	in Writing Report,		
	Report, Types of	Layout of the Research		
	Reports, Oral	Report, Types of		
	Presentation, Mechanics	Reports, Oral		
	of Writing a Research	Presentation, Mechanics		
	Report, Precautions for	of Writing a Research		
	Writing a Research	Report, Precautions for		
	Report, Case study.	Writing a Research		
		Report, Research report		
		writing using Latex.		
		Case study.		

Semester: VII Course: Simulation and Modeling Course Code: CS743E03

Unit Existing Syllabus Proposed Syllabus Reasons for Change	Remarks	

Unit-3	Unit-3 DESIGN OF	Unit-3	To accommodate recent	Applicable for
	SIMULATION	DESIGN OF	industry based concepts	2022,2021,2020
	EXPERIMENTS	SIMULATION	J I	
	Problem formulation,	EXPERIMENTS :		
	data collection and	Problem formulation,		
	reduction, time flow	data collection and		
	mechanism, key	reduction, time flow		
	variables, logic flow	mechanism, key		
	chart, starting	variables, logic flow		
	condition, run size,	chart, starting		
	experimental design	condition, run size,		
	consideration, output	experimental design		
	analysis and	consideration, Splitting		
Unit-4	interpretation	and Sampling		
	validation.	Techniques, output		
		analysis and		
	Unit-4 SIMULATION	interpretation		
	LANGUAGES	validation		
	Comparison and	Unit-4		
	selection of simulation	Systems Models : Deep		
	languages, study of	learning models like		
	anyone simulation	ANN and CNN Models		
	language.	and Reinforcement		
		learning models		

Semester: VIII

Course: Grid Computing Course Code: CS745E04

Unit	Existing Syllabus	Proposed Syllabus	Reasons for Change	Remarks
Unit 1		Comparison of Grid	To accommodate recent	Applicable for
		Computing and Cloud	industry based concepts	2022,2021,2020
		Computing		

Semester: VIII Course: Quantum Computing

Course Code: CS745E01

Unit	Existing Syllabus	Proposed Syllabus	Reasons for Change	Remarks
Unit 1	Unit-1	Title 1 : Fundamental	To accommodate recent	Applicable for
	FUNDAMENTAL	Concepts	industry based concepts	2022,2021,2020
	CONCEPTS	Global Perspectives,	and based on	
	Global Perspectives,	Linear algebra and	stakeholders feedback	
	Quantum Bits,	Dirac notation, ,		
	Quantum Computation,	Quantum Bits,		
	Quantum	Quantum Computation,		
	Information, Quantum	Properties of Quantum		
	Circuits - Universal	Algorithms, Quantum		
	Quantum Gates -	Information, Postulates		
	Postulates of	of Quantum		
	Quantum Mechanisms.	Mechanisms.		
		Experiment 1:		
		Implementation of		
		superposition,		
		interference and		
		entanglement		
Unit 2	Unit-2 QUANTUM	Title 2: Quantum	To accommodate recent	Applicable for
	COMPUTATION	Computation	industry based concepts	2022,2021,2020
	Quantum Circuits -	Quantum Gates and	and based on	
	Quantum algorithms,	Quantum Circuits,	stakeholders feedback	
	Single Orbit	Quantum States,		
	operations, Control	Representation of		
	Operations,	Quantum States,		
	Measurement,	Control Operations,		
	Universal Quantum	Measurement,		
	Gates, Simulation of	Simulation of Quantum		
	Quantum Systems,	Systems, Quantum		
	Quantum Fourier	Fourier transform,		
	transform, Phase	Quantum Phase		
	estimation,	estimation, Quantum		

Applications, Quantum search algorithms – Quantum counting – Speeding up the solution of NP – complete problems – Quantum Search for an unstructured database.	search algorithms, Quantum counting Algorithms, Models of Computation, Analysis of Computational Problems. Experiment 1: Grover's Search Algorithms		
Unit-3 QUANTUM COMPUTERS Guiding Principles, Conditions for Quantum Computation, Harmonic Oscillator Quantum Computer, Optical Photon Quantum Computer - Optical cavity Quantum electrodynamics, Ion traps, Nuclear Magnetic resonance.	Title 3: Quantum Information Classical Noise and Markov Processes, Quantum noise and Quantum Operations - Representations, Examples, Applications of Quantum operations, Limitations of the Quantum operations formalism, Distance Measures for Quantum information. Experiment 2: Quantum Random Number Generation	To accommodate recent industry based concepts and based on stakeholders feedback	Applicable for 2022,2021,2020
Unit-4 QUANTUM INFORMATIONS Quantum noise and Quantum Operations -	Title 4: Quantum Error Correction Introduction, The Shor code, Theory of	To accommodate recent industry based concepts and based on stakeholders feedback	Applicable for 2022,2021,2020

Classical Noise and	Quantum Error -		
Markov Processes,	Correction,		
Quantum Operations,	Constructing Quantum		
Examples of Quantum	Codes, Stabilizer codes,		
noise and Quantum	Fault – Tolerant		
Operations –	Quantum Computation,		
Applications of	Entropy and		
Quantum operations,	information – Shannon		
Limitations of the	Entropy, Basic		
Quantum operations	properties of Entropy,		
formalism, Distance	Von Neumann, Strong		
Measures for Quantum	Sub Additivity, Data		
information.	Compression,		
	Entanglement as a		
	physical resource. Case		
	study.		
	Experiment 2		
	Experiment 5.		
	Codes for encoding and		
	decoding information		
Unit-5 QUANTUM	Title 5: Quantum	To accommodate recent	Applicable for
ERROR CORRECTION	Cryptography	industry based concepts	2022,2021,2020
Introduction, Shor code,	Classical Cryptography	and based on	
Theory of Quantum	- Symmetrical	stakeholders feedback	
Error -Correction,	Cryptosystem,		
Constructing Quantum	Asymmetrical		
Codes, Stabilizer codes,	Cryptosystem,		
Fault – Tolerant	Quantum Key		
Quantum Computation,	Distribution - No-		
Entropy and	Cloning Theorem, The		
information - Shannon	BB84 Protocol, The		
Entropy, Basic	Ekert Protocol, Real-		
properties of Entropy,	World Implementation -		
Von Neumann, Strong	Polarisation Encoding,		

Sub Additivity, Data	Polarisation	
Compression,	Entanglement, The	
Entanglement as a	"Venus von Willendorf"	
physical resource. Case	Experiment.	
study.	_	
-	Experiment 5: Quantum	
	Key Distribution	

Semester: 6 Course: Soft Computing Course Code: AIML634

Unit	Existing Syllabus	Proposed Syllabus	Reasons for Change	Remarks
	Unit-3 OPTIMIZATION	Unit 3:	Suggestion given by	Applicable for Batch
Unit 3	ALGORITHMS	OPTIMIZATION	Program and Course	2022
	What is an Algorithm?	ALGORITHMS	Coordinator	
	Newton's Method,	No-Free-Lunch		
	Formulation of	Theorems, Nature-		
	Optimization Problems,	Inspired Algorithms, A		
	Optimization	Brief History of		
	Algorithms: Gradient-	Metaheuristics.		
	Based Algorithms and	Analysis of		
	Hill Climbing with	Optimization		
	Random	Algorithms:		
	Restart, Search for	Exploration and		
	Optimality, No-Free-	Exploitation.		
	Lunch Theorems,	Classification of		
	Nature-Inspired	Nature-Inspired		
	Metaheuristics, A Brief	Algorithms.		
	History of			
	Metaheuristics.			
	Analysis of			
	Optimization			
	Algorithms:			
	Exploration and			

	Exploitation			
Unit 5	Unit 5: APPLICATIONS	Unit 5: Evolutionary	Suggestion given by	Applicable for Batch
	Intelligent Image Color	and Bio-inspired	Program and Course	2022
	Reduction and	Algorithms	Coordinator	
	Quantization,	Genetic Algorithm,		
	Minimum Spanning	Differential evolution,		
	Tree, Robot	Biogeography-based		
	Path Planning, Data	optimization, Shuffled		
	Envelopment Analysis,	frog leaping algorithm.		
	Portfolio Optimization,	Course Project: A		
	Facility Layout	substantial project work		
	Design, Vehicle Routing	for applying these		
	Problem, Parallel	algorithms for any data		
	Machine Scheduling,	science problem.		
	Bin Packing Problem	-		
	and Assignment			
	problem.			

Semester: VI Course: Business Intelligence Course Code: DS634

Unit	Existing Syllabus	Proposed Syllabus	Reasons for Change	Remarks
UNIT-5	Unit-5 WORKING	Unit 5: HR & SUPPLY	To accommodate recent	Applicable for 2022-
	WITH BI TOOLS	CHAIN ANALYTICS	industry based concepts	2026
	Overview of	Human Resources -		
	managerial, strategic	Planning and		
	and technical issues	Recruitment - Training		
	associated with	and Development -		
	Business Intelligence	Supply chain network -		
	and Data Warehouse	Planning Demand,		
	design, implementation,	Inventory and Supply –		
	and utilization. Critical	Logistics – Analytics		
	issues in planning,	applications in HR &		
	physical design process,	Supply Chain,		
	deployment	Customer Behavior,		

and on going	Analytics applications	
maintenance. Dash	in Marketing and Sales	
Boards and Scorecards		
Creation, Case study on		
the specific data set in		
BI tools		

Semester: 5 Course: Introduction to IOT Course Code: IOT531P

Unit	Existing Syllabus	Proposed Syllabus	Reasons for Change	Remarks
3	IoT Architecture Web of Things versus Internet of Things – Two Pillars of the Web – Unified Multitier WoT Architecture, Cloud Providers and Systems, The Cloud of Things Architecture. IoT Protocols: Application Protocols, Service Discovery Protocols, Infrastructure Protocols,	Title 3: IoT Architecture Web of Things versus Internet of Things – Two Pillars of the Web – Unified Multitier WoT Architecture, Cloud Providers and Systems, The Cloud of Things Architecture. IoT Protocols: Application Protocols, Service Discovery Protocols, Infrastructure Protocols, IoT Data Link Protocols, Network Layer Routing Protocols, Network Layer Encapsulation Protocols, Session Layer Protocols.	To accommodate recent industry based concepts	Applicable for 2021 and 2022 Batch

Semester: 6 Course: Advance IOT (IIOT, IOMT, and BIOT)

Course Code: IOT631P

Unit	Existing Syllabus	Proposed Syllabus	Reasons for Change	Remarks
1	Advanced IoT and Cloud : Internet of Things and Data Analytics in the Cloud with Innovation and Sustainability Introduction, The IoT and the Fourth Industrial Revolution, Internet of Things Technology, Standards and Protocols, IoT Ecosystem 11, Definition of Big Data, IoT, Data Analytics, and Cloud Computing, Creativity, Invention, Innovation, and Disruptive Innovation, Polya's "How to Solve it", Business Plan and Business Model, Conclusion and Future Perspective Digital Services and Sustainable Solutions Introduction, Why IoT is not Just "Nice to Have", Services in a Digital Revolution, Mobile Digital Services and the Human Sensor, Not Just Another App, The Hidden Life of Things, The Umbrellas are not what they Seem, Interacting with the Invisible, Society as Open Source, Learn from your Hackers, Ensuring High-Quality Services to Citizens, Government as a Platform, Conclusion	Introduction to IOT, Definition of IIOT, IOT Vs. IIOT, History of IIOT, Components of IIOT - Sensors, Interface, Networks, Key terms – IOT Platform, Interfaces, API, clouds, Data Management Analytics, Mining &Manipulation, IOT components, Various Architectures of IOT and IIOT, Advantages & disadvantages, Industrial Internet - Reference Architecture; IIOT System components: Sensors, Gateways, Routers, Modem, Cloud brokers, servers and its integration, WSN, WSN network design for IOT.	To accommodate recent industry based concepts	Applicable for 2021 and 2022 Batch
	Industrial Internet of Things (IIoT) :	Introduction to sensors,	To accommodate recent	Applicable for 2021 and
	The Industrial Internet of Things (IIoT): Applications and Taxonomy Introduction to the IIoT , Some	Roles of sensors in IIOT, Various types of sensors, Design of	industry based concepts	2022 Batch

2	Examples of IIoT Applications , Toward a Taxonomy of the IIoT, Standards and Protocols for Connectivity , Connectivity Architecture for the IIoT, Data- Centricity Makes DDS Different, The Future of the IIoT Strategic Planning for Smarter Cities Introduction, What is a Smart City?, Smart Cities and the Internet of Things , Why Strategic Planning Matters, Beginning the Journey: First Things First, From Vision to Objectives to Execution, Pulling it all Together	sensors, sensor architecture, special requirements for IIOT sensors, Role of actuators, types of actuators. Need of protocols; Types of Protocols, Wi-Fi direct, Zigbee, Z wave, BACNet, BLE, Modbus, SPI, I2C,NFC, IIOT protocols -COAP, MQTT, 6lowpan, lwm2m, AMPQ.		
3	Internet of Medical Things (IoMT) : Next-Generation Learning: Smart Medical Team Training Introduction , Learning, Analytics, and Internet of Things, IoT Learning Design Process, Conclusion. The Brain- Computer Interface in the Internet of Things Introduction , The Science Behind Reading the Brain, The Science of Writing to the Brain , The Human Connectome Project, Summary IoT Innovation Pulse The Convergence of Exponential Technologies as a Driver of Innovation , Six Dimensions of the Pleco system, Five Principles of the Pleco system , The Biologic Organism Analogy for the IoT, Components for Innovation with the	IIoT, Different Classes of Analytics, IIoT Analytics Technologies, Building IIoT Analytics, Understanding the Role of Infrastructure deploying Analytics, OSA Analytics and Practices, Working with MS Azure, ML Service.	To accommodate recent industry based concepts	Applicable for 2021 and 2022 Batch

	Organismal Analog, Spinozan Value Trade- Offs, Human IoT Sensor Networks, Role of the IoT in Social Networks, Security and Cyberthreat Resilience, IoT Optimization for Sustainability of our Planet, Maintenance of Complex IoT Networks , The Accordion Model of Learning as a Source of Innovation			
4	Internet of Wearable Things (IoWT), IPv6 for IoT and Gateway A Designer's Guide to the Internet of Wearable Things Introduction, Interface Glanceability, The Right Data at the Right Time, Consistency Across Channels, From Public to Personal, Nonvisual UI, Emerging Patterns, Conclusion. IPv6 for IoT and Gateway Introduction, IP: The Internet Protocol, IPv6: The Next Internet Protocol, 6LoWPAN: IP for IoT, Gateways: A Bad Choice, Example IoT Systems, An IoT Data Model, The Problem of Data Ownership, Managing the Life of an IoT Device, Conclusion: Looking forward.	Introduction to web security, Conventional web technology and relationship with IIOT, Vulnerabilities of IoT, Privacy, Security requirements, Threat analysis, Trust, IoT security tomography and layered attacker model, Identity establishment, Access control, Message integrity, Non- repudiation and availability	To accommodate recent industry based concepts	Applicable for 2021 and 2022 Batch
5	BIOT and SCADA : Beacon Technology with IoT and Big Data Introduction to Beacons , What is Beacon Technology, Beacon and BLE Interaction , Where Beacon	What are IoMT and its working? Tracking assets and resources, Internet of things in hospitals, collection and	To accommodate recent industry based concepts	Applicable for 2021 and 2022 Batch

Fundamentals and Applications in the IoT Introduction, What Exactly is SCADA?, Why is SCADA the Right Foundation for an IoT Platform?, Case Study: Algae Lab Systems, The Future of SCADA and the Potential of the IoTbisudvaluages of 101 and healthcare, Home Monitoring System for Aged Care, Smart Medication Adherence System for Automated Drug Dispensation, Connected Rural Healthcare Consultation, Population and Environment Monitoring of Infectious Diseases.	
---	--

Semester: 6 Course: IoT Analytics and security Course Code: IOT632P

Unit	Existing Syllabus	Proposed Syllabus	Reasons for Change	Remarks
4	Data Analytics in Smart Buildings Introduction, Addressing Energy Efficiency in Smart Buildings, A proposal of general architecture for management systems of smart buildings, IoT based system for Energy Efficiency in Smart Buildings, Evaluation and Results	Unit 1,2,3 is catered to Analytics and unit 4,5 catered to security aspects(Cryptography and Network Security)	To accommodate recent industry based concepts	Applicable for 2021 and 2022 Batch

5	Introduction, Cloud based IoT Analytics, Cloud based city platform, New challenges towards Edge based solutions, Edge based IoT Analytics. Use case of Edge	Unit 1,2,3 is catered to Analytics and unit 4,5 catered to security aspects(Cryptography and Network Security)	To accommodate recent industry based concepts	Applicable for 2021 and 2022 Batch
	based data analytics	and Network Security)		

Semester: 1

Course: Mathematical and Statistical Skills for Data Science Course Code:MTDS133

Unit	Existing Syllabus	Proposed Syllabus	Reasons for Change	Remarks
	New	Course Description:	As per stakeholders	2023
1-5			recommendation	
		This course is an		
		introduction to the field		
		of statistics and how		
		engineers use statistical		
		methodology as		
		part of the engineering		
		problem-solving		
		process. Mathematical		
		and Statistical Skills for		
		Data Science Course		
		aligns with LRNG ($$) /		
		Skill Devlop $(\sqrt{)}$ /		
		Entrup / Emplyobilty		
		$(\sqrt{)}$ / Cross Cutting		
		Needs .		

Semester:1

Course:Business intelligence and its applications Course Code:MTDS134

Unit Existing Syllabus Proposed Syllabus Reasons for Change Remarks

1-5	New	Course Description:	As per stakeholders	2023
			recommendation	
		This course elaborates		
		on the basics of business		
		intelligence concepts		
		and the knowledge		
		delivery. Students shall		
		also examine the		
		efficacy and the		
		business applications in		
		the real world.		

Semester:2

Course:Optimization Techniques for Data Science Course Code:MTDS232

Unit	Existing Syllabus	Proposed Syllabus	Reasons for Change	Remarks
1-5	New	Course Description:	As per stakeholders	2023
		Introduction to	recommendation	
		optimization techniques		
		use both linear and		
		nonlinear		
		programming. The		
		focus of the course is on		
		convex optimization		
		though some techniques		
		will be covered for non-		
		convex function		
		optimization too. After		
		an adequate		
		introduction to linear		
		algebra and probability		
		theory, students will		
		learn to frame		
		engineering minima		

maxima problems in the	
framework of	
optimization problems .	

Semester:2 Course: Optimization Techniques Lab Course Code:MTDS252

Unit	Existing Syllabus	Proposed Syllabus	Reasons for Change	Remarks
1-5	New	Course Description:	As per stakeholders	2023
		Optimization	recommendation	
		techniques use both		
		linear and nonlinear		
		programming. The		
		focus of the course is on		
		convex optimization		
		though some techniques		
		will be covered for non-		
		convex function		
		optimization too. After		
		an adequate		
		introduction to linear		
		algebra and probability		
		theory, students will		
		learn to frame		
		engineering minima		
		maxima problems in the		
		framework of		
		optimization problems.		

Semester:2 Course:Stochastic Processes and Queuing Theory Course Code:MTDS241E03

Unit	Existing Syllabus	Proposed Syllabus	Reasons for Change	Remarks
1-5	New	Course Description:	As per stakeholders	2023
			recommendation	
		This course gives a		
		detailed introduction		
		into queueing theory		
		along with the stochastic		
		processes techniques		
		useful for modeling		
		queueing systems. A		
		queue is a waiting line,		
		and a queueing system		
		is a system which		
		provides service to some		
		jobs (customers, clients)		
		that arrive with time		
		and wait to get served		
		(Examples: - a		
		telecommunication		
		system that processes		
		requests for		
		communication; - a		
		hospital facing		
		randomly occurring		
		demand for hospital		
		beds; - central		
		processing unit that		
		handles arriving jobs)		

Semester:2 Course:Cognitive Science Course Code:MTDS241E04

Unit	Existing Syllabus	Proposed Syllabus	Reasons for Change	Remarks
------	-------------------	-------------------	--------------------	---------

	New	Course Description:	As per stakeholders	2023
1-5		Cognitive Science is the	recommendation	
		science of mind and		
		brain. In this course we		
		study the history of		
		Cognitive Science		
		followed by developing		
		a Unified Framework		
		among different		
		disciplines. We also see		
		the way the mind is		
		organized and the		
		model of information		
		processing in mind.		

Semester:2

Course:Predictive Analytics for Internet of Things Course Code:MTDS242E01

Unit	Existing Syllabus	Proposed Syllabus	Reasons for Change	Remarks
1-5	New	Course Description:	As per stakeholders	2023
			recommendation	
		The Predictive Analytics		
		for IoT course provides		
		students with the		
		knowledge and skills to		
		analyze IoT data using		
		advanced predictive		
		analytics techniques.		
		The course covers the		
		fundamentals of IoT and		
		predictive analytics		
		including data		
		acquisition,		
		preprocessing and		
		Visualization.The		
		course will also equip		

	the students with the	
	necessary skills to	
	pursue a career in data	
	analytics, IoT and	
	related fields.	

Semester:2

Course:Computational Linear Algebra Course Code:MTDS242E05

Unit	Existing Syllabus	Proposed Syllabus	Reasons for Change	Remarks
	New	Course Description: In	As per stakeholders	2023
1-5		this course you will	recommendation	
		investigate fundamental		
		concepts of linear		
		algebra and explore		
		their application to		
		problems arising from		
		mathematics, applied		
		mathematics, and other		
		fields.		

Semester:3

Course:Graphs Algorithms and Mining Course Code:MTDS341E01

Unit	Existing Syllabus	Proposed Syllabus	Reasons for Change	Remarks
	New	Course Description:	As per stakeholders	2023
1-5		This course "Graph	recommendation	
		Algorithm and Mining"		
		will be helpful to		
		understand some recent		
		trends in Deep Learning		
		technology based on		
		Graph theory, for		
		example, GNN, GAT		
		etc. This course		

	provides depth	
	knowledge of Graph	
	theory as well as its	
	application on computer	
	vision tasks.	

Semester:3 Course:Business Analytics Course Code:MTCS361OE03

Unit	Existing Syllabus	Proposed Syllabus	Reasons for Change	Remarks
1-5	New	Course Description:	As per stakeholders	2023
		This course is a source	recommendation	
		of information that can		
		be used to teach		
		business intelligence in		
		one semester. It will be a		
		good place to start for		
		people who are learning		
		for the first time,		
		especially those in		
		engineering and		
		management. You can't		
		just study one part of		
		Business Intelligence.		
		The subject gives a		
		complete look at BI,		
		starting with an		
		enterprise context and		
		going on to explain how		
		to use tools to learn		
		more. It also talks about		
		a few areas where BI is		
		used and the problems it		
		can help solve. It covers		
		the whole life cycle of a		

	BI/Analytics project,	
	including	
	operational/transaction	
	al data sources, data	
	transformation, data	
	mart/warehouse	
	design-build, analytical	
	reporting, and	
	dashboards.	

Semester: I Course: Advanced Database Systems Course Code: MTCS133

Unit	Existing Syllabus	Proposed Syllabus	Reasons for Change	Remarks
Title 1 : Introduction to DBS	New course	Database Management systems Application of DBMS, Advantages of DBMS-ER model, Components of E-R diagram, Cardinality – Relational databases, Converting ER Diagram into Relations/Tables.	As per recommendation and need of the hour	2023
Title 2: Normalization: Database Design Theory		Introduction to Normalization using Functional and Multivalued Dependencies: Informal design guidelines for relation schema, Functional Dependencies, Normal Forms based on Primary Keys, Second and Third Normal Forms	As per recommendation and need of the hour	2023
Title 3: SQL :		Simple queries in SQL, queries involving more than one relation, sub queries, full relational operations, Database modifications, defining a relational	As per recommendation and need of the hour	2023

	schema in SQL, view definitions.		
Title 4: Constraints and Triggers:	Keys and foreign keys, constraints on attributes and tuples, modification of constraints, schema level constraints and Triggers.	As per recommendation and need of the hour	2023
Title 5: Transaction Processing	Transaction Processing: Introduction to Transaction Processing, Transaction and System concepts, Desirable properties of Transactions, Characterizing schedules based on recoverability, Characterizing schedules based on Serializability, Transaction support in SQL. Concurrency Control in Databases: Two-phase locking techniques for Concurrency control, Concurrency control based on Timestamp ordering, Multiversion Concurrency control techniques, Validation Concurrency control techniques, Granularity of Data items and Multiple Granularity Locking. Recovery Concepts , NO-UNDO/REDO recovery based on Deferred update, Recovery techniques based on immediate update, Shadow paging, Database backup and recovery from catastrophic failures.	As per recommendation and need of the hour	2023
Title 6: Object- Orientation in Query Languages:	Introduction to OQL, Additional Forms of OQL Expressions, Object Assignment and Creation in OQL, User-Defined Types in SQL, Operations on Object- Relational Data.	As per recommendation and need of the hour	2023

Semester:I Course: Advanced Data Science Course Code: MTCS135

Unit	Existing	Proposed Syllabus	Reasons for	Remarks
	Syllabus		Change	
Title 1 : INTRODUCTION AND THE DATA SCIENCE	New Course	Data science process – roles, stages in data science project – working with data from files –relational and Non-Relational databases – exploring data – managing data – cleaning and sampling for modeling and validation – Data preprocessing-Statistics for Data Science- Data Distributions.	As per recommendation and need of the hour	2023
Title 2: MODELING METHODS		Choosing and evaluating models – mapping problems to machine learning, evaluating clustering models, validating models – cluster analysis – K-means algorithm unsupervised methods. , Naïve Bayes – Memorization Methods – Linear and logistic regression – unsupervised methods.	As per recommendation and need of the hour	2023
Title 3: ANALYTICS WITH PYTHON		Data Analysis with Numpy and Pandas – Visualization with Seaborn Matplotlib, Plotly and Cufflinks – Scikit -learn – Regression, KNN, PCA and SVM in Python– Recommender systems – NLP with NLTK – Neural Nets and Deep Learning with Tensor Flow	As per recommendation and need of the hour	2023
Title 4: SPARK SYSTEMS		Introduction -Hadoop vs Spark - Spark Data Frame - Group by and Aggregate - RDD(Resilient Distributed Datasets) -	As per recommendation and need of the	2023

	Spark SQL – Spark Running on Cluster– Machine Learning with Mlib– Collaborative Filtering–NLP Applications–Spark Streaming.	hour	
Title 5: Convolutional		As per	2023
Neural Networks	CNN Architectures – Convolution –	recommendation	
	Pooling Layers – Transfer Learning –	and need of the	
	Image Classification using Transfer	hour	
	Learning – Recurrent and Recursive Nets		
	- Recurrent Neural Networks - Deep		
	Recurrent Networks – Recursive Neural		
	Networks - Applications.		

Semester: I Course: Advanced Database Systems Lab Course Code: MTCS152

Unit	Existing Syllabus	Proposed Syllabus	Reasons for Change	Remarks
Title1:	New Course	Study of all SQL	As per recommendation	2023
		commands	and need of the hour	
Title2:		Study of all SQL	As per recommendation	2023
		commands	and need of the hour	
Title3:		Study of all SQL	As per recommendation	2023
		commands	and need of the hour	
Title4:		Implementation of	As per recommendation	2023
		PL/SQL Programs.	and need of the hour	
Title5:		Implementation of	As per recommendation	2023
		PL/SQL Programs.	and need of the hour	
Title6:		Implementation of	As per recommendation	2023
		PL/SQL Programs.	and need of the hour	
Title7:		Implementation of	As per recommendation	2023
		Cursor, Trigger.	and need of the hour	

Semester: II

Course:Data and Web Analytics Course Code: MTCS232

Unit	Existing	Proposed Syllabus	Reasons for	Remarks
	Syllabus		Change	
Title 1 : Introduction to Data and Web Analytics	New Course	Introduction, It's All About Data , Data Analytics, Data Mining, and Knowledge Discovery, Data and Relations, The Iris Data Set, Data Scales, Set and Matrix Representations, Relations, Dissimilarity Measures , Similarity Measures , Sequence Relations, Sampling, and Quantization. Differences between Data Analytics and Web Analytics, Case Study - Web Analytics , Current Landscape and Challenges , Web Analytics Fundamentals, Capturing Data , Selecting Optimal Web Analytics Tool , Understanding Clickstream Data Quality , Implementing Best Practices , Apply the "Three Layers of So What" Test	As per recommendat ion and need of the hour	2023
Title 2: Data Preprocessing and web analytics data collection		Data Preprocessing-Error Types, Error Handling, Filtering Data Transformation , Data Integration , Problems , Data Visualization Diagrams , Principal Component Analysis, Multidimensional Scaling , Sammon Mapping , Auto- encoder, Histograms , Spectral Analysis , Case Study web analytics Data Collection—Importance and Options Understanding the Data Landscape , Clickstream Data , Outcomes Data , Research Data , Competitive Data	As per recommendat ion and need of the hour	2023
		Correlation , Linear Correlation , Correlation and Causality , Chi-Square	As per recommendat	2023

Title 3: Correlation and Regression	Test for Independence, Problems , Regression , Linear Regression , Linear Regression with Nonlinear Substitution , Robust Regression , Neural Networks, Radial Basis Function Networks , Cross- Validation , Feature Selection , Problems	ion and need of the hour	
Title 4: Forecasting , Classification and Clustering	Forecasting , Finite State Machines , Recurrent Models , Autoregressive Models Problems and Use cases, Classification , Classification Criteria ,Naive Bayes Classifier ,Linear Discriminant Analysis , Support Vector Machine , Nearest Neighbor Classifier, Learning Vector Quantization , Decision Trees , Problems	As per recommendat ion and need of the hour	2023
Title 5: Clustering	Clustering , Cluster Partitions , Sequential Clustering , Prototype-Based Clustering , Fuzzy Clustering , Relational Clustering ,Cluster Tendency Assessment , Cluster Validity , Self-organizing Map, Problems and Use cases , Case study related to Web Analytics perspective of Creating a Data- Driven Culture – Practical Steps and Best Practices , Key Skills to Look for in a Web Analytics Manager/Leader	As per recommendat ion and need of the hour	2023

Semester: II Course: Network Security Lab Course Code: MTCS251

Unit	Existing Syllabus	Proposed Syllabus	Reasons for Change	Remarks
	by Habus			

Experiment 1:	New Syllabus	Implement the following algorithms a) DES b) RSA Algorithm	As per recommendation and need of the hour	2023
Experiment 2:		Implement the following algorithms Diffiee-Hellman , MD5 , SHA-1	As per recommendation and need of the hour	2023
Experiment 3:		Fire wall implementation using different security requirements	As per recommendation and need of the hour	2023
Experiment 4:		Demonstrate intrusion detection system (ids) using any tool (snort or any other s/w)	As per recommendation and need of the hour	2023
Experiment 5:		Implement some simple filtering rules based on IP and TCP header information	As per recommendation and need of the hour	2023

Semester: II

Course: Data and Web Analytics Lab Course Code: MTCS252

Unit	Existing	Proposed Syllabus	Reasons for	Remarks
	Syllabus		Change	
	New Syllabus	Hands-on experiments about Data and Web	As per	2023
Title 1 :		Analytics fundamentals using python	recommendatio	
		/matlab / R	n and need of	
			the hour	
		Hands-on experiments about data	As per	2023
		Preprocessing and web analytics data	recommendatio	
Title 2:		collection	n and need of	
			the hour	
		Hands-on experiments about Correlation and	As per	2023

Title 3:	Regression	recommendatio	
		n and need of	
		the hour	
Title 4:	Hands-on experiments about Forecasting,	As per	2023
	Classification and Clustering	recommendatio	
		n and need of	
		the hour	
Title 5:	Hands-on experiments about Clustering	As per	2023
		recommendatio	
		n and need of	
		the hour	

Semester: II / PEC II Course:IoT Architecture and Computing Course Code: MTCS242E01

Unit	Existing Syllabus	Proposed Syllabus	Reasons for Change	Remarks
	New Course	Course Description:	As per recommendation and need of the hour	2023

Semester: II / PEC II Course: Digital Image Forensics Course Code: MTCS242E05

Unit	Existing Syllabus	Proposed Syllabus	Reasons for Change	Remarks
	New Course	prerequisite as DIP,	As per recommendation	2023
All the Units		This course will cater to	and need of the hour	
		advance image		
		processing and digital		
		forensic		

Semester: III/PEC-III

Course: MTCS341E02

Course Code: Advanced Cognitive Science

	Unit	Existing	Proposed Syllabus	Reasons for	Remarks
--	------	----------	-------------------	--------------------	---------

	Syllabus		Change	
Title 1 : Introduction	New course	What is Cognitive Science, Representation, Computation,Interdisciplinary InterdisciplinaryPerspective	As per recommendat ion and need of the hour	2023
Title 2: The Big Picture: Bridging The Science And Technology For The Decision Maker		Introduction and Study Origin, What Decision Makers Want to Know	As per recommendat ion and need of the hour	2023
Title 3: Current Cognitive Neuroscience Research And Technology: Selected Areas Of Interest		Introduction, Challenges to the Detection of Psychological States and Intentions via Neurophysiological Activity, Neuropsychopharmacology, Functional Neuroimaging	As per recommendat ion and need of the hour	2023
Title 4: Emerging Areas Of Cognitive Neuroscience And Neurotechnologies		Introduction, Computational Biology Applied to Cognition, Functional Neuroimaging, Genomics, and Proteomics, Distributed Human-Machine Systems	As per recommendat ion and need of the hour	2023
Title 5: Cultural And Ethical Underpinnings Of Social Neuroscience		Introduction, Cultural Underpinnings of Social Neuroscience, Ethical Implications of Cognitive Neuroscience and Related Technologies	As per recommendat ion and need of the hour	2023
Title6:PotentialIntelligenceAndMilitary Applications OfCognitiveNeuroscience		Introduction, Market Drivers of Cognitive Neuroscience and Related Technologies as Indicators of the Demand for COTS Technologies, Technology Assessments:	As per recommendat ion and need of the hour	2023

And Related Technologies	Neuropsychopharmacology, Technology Assessments: Distributed Human-Machine Systems and Computational Biology, Findings and Recommendation		
Title 7: Robotics : The Ultimate Intelligent Agents	Introduction, Some Robotic Achievements, Evaluating Robotic Potentials, Biological and Behavioral Foundations of Robotic Paradigms, Foundations of Robotic Paradigms, Robotic Paradigms, Overall Evaluation of Robots as Ultimate Intelligent Agents, In Depth: Autonomous Robot Architecture (AuRA), Minds On Exercise: Relational Graphs	As per recommendat ion and need of the hour	2023
Title 8: Conclusion	The Benefits of Cognitive Science, Working Memory: An Example of an Integrated Program of Study, Issues in Cognitive Science, Enhancing Cognitive Science.	As per recommendat ion and need of the hour	2023

CDC - Coordinator.

HEAD of the Department Head Department of Computer Science and Engineering Bangalore Kengeri Campus CHRIST (Deemed to be University) Bengaluru - 560 074, INDIA