

Notice for the PhD Viva Voce Examination

Ms Muthamma M V (Reg. No. 1445204), PhD scholar at CHRIST (Deemed to be University), will defend her PhD thesis at the public viva voce examination on Thursday, 29 April, 2021 at 11.00 am. The defense will be conducted online on the Webex Meeting platform.

Title of the Thesis	:	Polyvinyl Alcohol and Epoxy based Composites for Radiation Shielding Applications
Discipline	:	Physics
External Examiner (Outside Karnataka)	:	Dr Ramasubramanian V Professor Department of Physics VIT University Vellore – 632014 Tamil Nadu
External Examiner (Within Karnataka)	:	Dr R F Bhajantri Professor Department of Studies in Physics Karnatak University Dharwad- 580003 Karnataka
Supervisor	:	Dr Bubbly S G Professor Department of Physics and Electronics School of Sciences CHRIST (Deemed to be University) Bengaluru – 560029 Karnataka

The faculty members of the Department and the School, interested experts and research scholars of all the branches of research are cordially invited to attend this open viva.

Registrar

Place: Bengaluru Date: 23 April 2021

ABSTRACT

The present study has been focused towards designing efficient, non-toxic and cost-effective shielding materials with good mechanical strength for protection against radiations encountered in various environments like aerospace, hospitals, research and nuclear reactor establishments. From this perspective, to impart desired shielding properties, high Z filler dispersed polymer matrices such as Bi/WO₃-polyvinyl alcohol (PVA), Ta₂O₅-epoxy, Ta₂O₅-Bi₂O₃-epoxy, micro Bi₂O₃-epoxy and nano Bi₂O₃-epoxy with varying filler contents have been synthesized. Structural characterizations were carried out using X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy to reveal the interactions between filler and polymer matrix. The morphological analyses were performed using scanning electron microscopy (SEM) images. The AC conductivity measurements and optical studies revealed low conductivity property of the composites. The thermo gravimetric analysis (TGA) and mechanical studies were conducted to ascertain thermal stability and mechanical properties of the composites. With increase in filler concentration mechanical properties of Bi/WO₃-PVA composites were found to be weakening. The TGA studies of Bi/WO₃-PVA composites showed decrease in peak degradation temperature with increase in filler content. This prompted us to further design epoxy composites as epoxy matrix has good thermal stability and mechanical strength. Compared to neat epoxy, dispersion of varying wt% of Ta₂O₅ and Bi₂O₃ into epoxy matrix led to significant improvement in stiffness, storage modulus, glass transition temperature and thermal stability of the composites. Epoxy composites with 5 wt% of Ta₂O₅ and 30 wt% of Bi₂O₃ revealed better thermal and tensile properties when compared to same wt% Bi₂O₃ filled epoxy composites. The synergistic influence of micro and nano Bi_2O_3 filler on epoxy matrix composites showed similar thermal behaviour. Significant enhancement in mechanical property was observed at lower filler loadings of nano Bi₂O₃ comparable with higher wt% micro Bi₂O₃-epoxy composites. X-ray and γ ray attenuation behaviour of Bi/WO3-PVA, Ta2O5-epoxy, Ta2O5-Bi2O3-epoxy micro/nano Bi2O3epoxy composites were studied using CdTe and NaI(Tl) detector spectrometers, respectively at various energies. Mass attenuation coefficients (μ/ρ) of the composites at various energies of X-rays and γ-rays from ⁵⁵Fe (5.895 keV and 6.490 keV), ²⁴¹Am (59.54 keV), ²²Na (0.511 and 1.28 MeV), ¹³⁷Cs-137 (0.662 MeV), ¹³³Ba (0.356 MeV) and ⁶⁰Co (1.173 and 1.332 MeV) point sources were determined. Experimental μ/ρ values for all the composites were compared with theoretical values computed using WinXCom and were found to be in good agreement.

The investigation on superiority of Ta₂O₅ and Bi₂O₃ filled epoxy composites and nano Bi₂O₃ filled composites, relative to other composites was manifested on the dependence of intrinsic property of the filler and the photon energy. However, all the studied composites also demonstrated good radiation shielding. Bi-PVA composites showed higher μ/ρ values compared to WO₃-PVA composites for X-ray and γ -ray photon energies. Novel epoxy composites having both Bi₂O₃ and Ta₂O₅ fillers showed similar μ/ρ values when compared with epoxy composites having only Ta₂O₅ fillers. Effective atomic number (Z_{eff}), electron density (N_{eff}) and other radiation attenuation parameters such as half-value layer (HVL), tenth-value layer (TVL) and relaxation length (λ) were calculated from the experimental μ/ρ values. These investigations assess the experimental evidences of possibility and perspectives of using Ta₂O₅-Bi₂O₃-epoxy composites and nano Bi₂O₃-epoxy composites as optimal radiation shields when exposed to low and high energy X-rays and γ -rays.

Keywords: Bi-PVA and WO₃-PVA composites, micro/nano Bi₂O₃-epoxy composites, AC conductivity, optical properties, mechanical properties, thermal properties, mass attenuation coefficients, Z_{eff} and N_{eff} .